REFRAKSI ATMOSFER

  • Distortion of sun & moon

Terjadi jika matahari (bulan) rendah di atas horizon, jalur cahaya melewati atmosfir sangat jauh, dan struktur atmosfir  berlapis lapis karena perbedaan gradien temperatur dan tekanan. Refraksi cahaya menyebabkan piringan matahari(bulan) berubah bentuk seperti di gambar di atas

  • Flattening of sun and moon

Gradien temperatur dan tekanan  di atmosfir menyebabkan berkas cahaya melengkung  Cahaya matahari atau bulan akan membias lebih mendekati horizon. Itulah sebabnya kenapa bulan atau matahari tampak agak mendatar.Cahaya dari piringan bagian bawah lebih banyak membias daripada bagian atas dan sudut vertikal dimana kita melihat bulan mengecil.

  • Green flash

Fenomena terjadi saat matahari berada di bawah horizon. Sudut  refraksi dari spektrum cahaya hijau sedikit lebih besar dari cahaya merah pada piringan atas. Akibatnya tepi piringan terlihat hijau kadang biru pada cuaca cerah.Fenomena ini dapat dilihat beberapa detik setelah  matahari terbenam namun sangat jarang walaupun melihatnya dengan alat teropong

  • Inferior mirages (land)

Bayangan sebuah benda yang terlihat berada dibawah benda tersebut. Biasanya bayangannya terbalik. Saat hari yang cerah dan panas, bayangan terlihat pada tanah yang datar, mis tanah yang baru dibajak, padang pasir. Langit direfleksikan ke tanah sehingga seolah olah seperti permukaan air

  • Inferior mirages (road)

Inferior mirage yang terlihat di jalan raya pada saat  hari cerah dan panas. Bayangan terlihat di bawah benda dan terbalik. Pemanasan di atas jalan menimbulkan gradien temperatur yang tajam  cahaya dibiaskan ke atas sehingga kita seolah olah berada di bawah jalan untuk melihat cahaya yang datang dari langit atau horizon. Dengan demikian mirage menyebabkan langit direfleksikan ke atas jalan sehingga seolah olah ada permukaan air

  • Inferior mirages (water)

Inferior mirage kadang juga terlihat di atas danau atau laut, karena permukaannya sangat luas dan datar. Di atas danau Markermeer dan IJsselmeer di Belanda, misalnya, inferior mirages sering terjadi.Mirage membuat  horizon kelihtan terangkat dan terbalik; kadang kadang bayangan bisa lebih kecil  ( stooping) atau lebih panjang (looming), kadang kadang besar bayangan sama dengan benda. Mirage terjadi karena  gradien temperatur di atmosfir; udara dingin di atas udara panas membiaskan cahaya  ke atas, sehingga melihat ke bawah untuk melihat cahaya  dari horizon atau langit.

  • Red flash

Red flash terlihat pada tepi bawah piringan matahari saat mendekati horizon melalui kondisi inversi temperatur yang kecil. Perlu teleskop untuk melihat fenomena ini secara jelas Pada saat hari panas, udara  kelihatan seperti mendidih, utamanya di atas permukaan yang sangat panas seperti jalan,dan atap bangunan. Fenomena ini disebut dengan  shimmering disebabkan oleh turbulensi udara panas yang kerapatannya berbeda dan juga indeks refraksinya. Perbedaan ini menyebabkan gelembung udara seperti lensa sehingga terjadi deviasi cahaya

  • Superior mirages

PREDIKSI GEMPABUMI

PREDIKSI GEMPABUMI

Prediksi gempabumi merupakan kegiatan yang sangat mengandung resiko sosial dibanding dengan prakiraan cuaca. Secara teoritis gempabumi merupakan gejala alam biasa oleh sebab itu sebelum peristiwa alam itu terjadi semestinya akan terdapat perubahan parameter fisis yang mendahuluinya atau yang disebut sebagai precursor. Yang menjadi masalah adalah secara operasional untuk melakukan pengamatan precursor ini memerlukan usaha dan dana yang tidak sedikit.

Dari banyak precursor itu diantaranya adalah hasil eksperimen di laboratorium menunjukkan bahwa sebelum terjadi gempabumi maka batuan di sekitarnya akan mengalami perubahan parameter-parameter seperti : tahanan listrik akan menurun, adanya perubahan stress dan strain, adanya fluktuasi unsur radon, perubahan permukaan air bawah tanah, perubahan suhu air bawah tanah, dan lain-lain.

Kegiatan prediksi gempabumi, mencakup tiga hal yaitu, kapan gempabumi akan terjadi, dimana terjadinya dan seberapa besar kekuatannya. Di Jepang kegiatan ini mulai dilakukan sejak tahun 1965 dimana dalam perencanaannya terdapat empat bagian, yaitu pengamatan untuk kegiatan prediksi jangka panjang, pengamatan untuk kegiatan prediksi jangka pendek, penelitian dasar, dan kerjasama dengan institusi luar.

Pada prediksi jangka panjang pengamatan yang dilakukan adalah pengamatan geodesi, geomagnet, geologi, seismologi, seismic velocity, statistik dan lain-lain. Sedangkan untuk jangka pendek melakukan pengamatan geodesi (survei ulang pengamatan ground movement, temporal variation dan gravity), geochemical (ground water level, ground water quality, dan unsur-unsur radio aktif), dan pengamatan geomagnet. Sedang penelitian dasar meliputi percobaan-percobaan di laboratorium dan di lapangan yang meliputi experiment fracture dari sample batuan, pengukuran stress, dan lain-lain.

Di Amerika Serikat, kegiatan prediksi gempabumi diprioritaskan pada studi dasar mengenai crustal strain dan seismic monitoring yang dititik beratkan pada understanding of the seismic rupture process, serta eksperimen lapangan yang dilakukan untuk meramal gempa di areal South California dengan  pengamatan strain meter, ground water level.

Di Cina kegiatan ramalan gempabumi dilakukan dengan intensif dan dikonsentrasikan pada pengamatan precursor. Di negara itu telah dibagun jaringan pengamatan precursor yang terdiri dari ratusan stasiun pengamatan crustal deformation, hydro chemestry, ground water level, magnet bumi, dan ground resistivity,  serta banyak stasiun pengamatan yang lain seperti gravity, stress-strain dan electromagnetic.

Kegiatan prediksi gempabumi di Cina dilakukan dengan empat metode, yaitu: seismo-geological method, statistic analisys of seismicity (Gutenberg Richter Law), Corelation analisys ( position of / solar activity, gravity) dan precursor method. Diantara 4 metode tersebut yang menjadi andalan adalah metode pengamatan precursor. Pada metode ini prinsipnya adalah sebelum terjadi gempabumi akan didahului oleh anomali parameter-parameter fisis seperti perubahan yang menyolok dari parameter stress-strain, temperatur air bawah tanah, unsur radioaktif, geomagnit, resistivity, gravity, dan lain-lain bahkan akan ada perubahan dari tingkah laku binatang. Metode pengamatan precursor dipakai untuk prediksi jangka sedang dan pendek sedangkan metode yang lain dipakai untuk jangka panjang.

Dalam seismologi kita kenal precursory seismisity yang dibedakan menjadi tiga yaitu seismicity patern (seismic gap,variasi b value, dan lain-lain), source and medium parameters (stress drop, q value, variasi kecepatan gelombang, dan lain-lain), dan pembedaan urutan gempa (fore shock dan precursory swarm).

Secara teoritis gempabumi memang dapat diprediksi, namun para peneliti mengalami kesulitan karena beberapa hal, diantaranya: terbatasnya kondisi pengamatan terutama peralatannya, tidak periodiknya aktivitas gempabumi, ketidak tentuannya proses gempabumi, dan luasnya daerah jangkauan.

Selain dengan metode observasi precursor terdapat banyak metode dalam prediksi gempabumi, diantarnya: seismicity gap, seismicity band, increased seismicity, preseismic squance, variation of b value, source and medium parameters, wave velocity variations, fore shocks squance.

Salah satu contoh kegiatan prediksi gempa di Cina yang sangat sukses adalah peristiwa gempabumi Menglian yang terjadi pada 12 Juli 1995 dengan Magnitude Ms = 7,3 satu hari sebelum gempa utama terjadi diumumkan kepada masyarakat sehingga korban jiwa dapat dihindarkan.

Di Indonesia kegiatan prediksi  gempabumi dilakukan melalui penelitian secara individual oleh personil BMG, ITB dan beberapa instansi lain yang umumnya dilakukan dengan metode statistik menggunakan perhitungan periode ulang gempabumi.

Periode ulang gempa bumi maksudnya adalah bahwa gempa bumi dengan skala tertentu (misalnya M=8) akan terulang kembali di daerah yang sama pada kurun waktu tertentu. Perhitungan periode ulang ini memerlukan data paling tidak satu periode, lebih panjang lebih baik. Namun catatan gempa bumi dengan peralatan, baru dimulai pada awal abad 20. Karena itu untuk memperpanjang periode pengamatan, dibantu dengan catatan intensitas gempa yang sudah dimulai sejak awal abad masehi. Selain itu penelitian paleoseismik juga bisa membantu memperpanjang periode pengamatan.

Gempa yang sama kekuatannya dengan gempa pada 4 Juni 2000 di Bengkulu pernah terjadi dua kali pada 1833, 1914. Sehingga banyak yang setuju dengan teori prediksi gempabumi memakai metode periode ulang berkisar 80 tahun. Disamping itu terdapat juga gempa yang ukurannya lebih kecil dengan periode ulang lebih pendek.

Perhitungan matematis periode ulang gempa bumi di Sumatra oleh peneliti BMG (Rasyidi Sulaiman dan Robert Pasaribu, 2000) menunjukkan bahwa periode ulang di Sumatra Selatan berkisar antara 8-34 tahun dengan nilai tengah 21 tahun. Gempa pada tahun 1979 di Bengkulu yang cukup besar dengan M=5.8, MMI=VIII, sedangkan gempa berikutnya adalah Juni 2000 (1979+21tahun).

Gempabumi di lautan Indonesia sebelah selatan Jawa Barat dengan magnitude 8,1 SR terjadi pada tahun 1903 telah dihitung periode ulangnya dengan metode Weibul  (Subardjo, 1990) kurang lebih 125 tahun atau dalam jangka waktu antara 108 – 122 tahun.

1. Periode Ulang Gempabumi Distribusi Weibull

Kemungkinan terjadinya gempabumi pada selang waktu t  dan t + t adalah  l(t) dan oleh Weibull dinyatakan dalam formula:

l(t) = k tm ……………………………..(9.1-1)

k dan m adalah konstanta dimana k > 1 dan m > -1. Probabilitas kumulatif kejadian gempabumi antara waktu nol dan t yang diberi notasi F(t) dengan reliabilitas R(t) didefinisikan sebagai :

R(t) = 1 – F(t), dan

R(t) = exp.( – ò (t) dt

= exp.  {- (kt m+1)/ (m+1)}………..(9.1-2)

Sedang probabilitas densitas dari suatu kejadian gempabumi dirumuskan sebagai berikut:

f(t) = – dR(t)/dt

= k tm exp.{- (kt m+1)/ (m+1)} ……(9.1-3)

Dengan cara momen ke r suatu perubah acak t dinotasikan sebagai Mr, yaitu nilai peluang t pangkat ke r, dengan r = 1,2,3,……n; maka diperoleh bentuk sebagai berikut:

~

Mr = E(t r) =  ò t f r (t) dt

~       o

= ò k tm+r exp.{- (kt m+1)/ (m+1)}dt ……(9.1-4)

o

Jika: (kt m+1)/ (m+1) = X  dan t m+1 = {(m+1)/k }X, maka

t =  [{(m+1)/k }X ] 1/(m+1)  ………………..(9.1-5)

selanjutnya diturunkan ke dx/dt diperoleh:

{k/(m+1)} (m+1) tm dt = dx ……………….(9.1-6)

dimana                         dt = dx / k tm

dt = dx / k [{(m+1)/k}x]m/(m+1)

akan didapat:

Mr = E(t r) =  {k/(m+1)}-r/(m+1) ò X(m+r+1)/(m+1) -1 exp.(-x) dx      …(9.1-7)

dimana : ò X(m-1) exp.(-x) dx = m ; m>0

akhirnya diperoleh:

Mr = E(t r) = {k/(m+1)}-r/(m+1) {(m+r+1)/m+1)} ….(9.1-8)

Didapat rumusan periode ulang gempabumi sebagai berikut:

Untuk r = 1;

M1 = E(t) = {k/(m+1)}-1/(m+1) {(m+2)/m+1)}  ……(9.1-9)

Untuk r = 2;     M2 = E(t) = {k/(m+1)}-2/(m+1) {(m+3)/m+1)} …….(9.1-10)

Simpangan baku rata-rata periode ulang gempabumi adalah:

SD = {E(t2) – E2(t)}1/2    …………………………..(9.1-11)

2. Perubahan Vp/Vs dan parameter lainnya

Beberapa perubahan dapat dipakai sebagai precursor gempabumi. Telah dijelaskan diatas bahwa dari hasil eksperimen di laboratorium suatu batuan yang diberi gaya secara terus menerus suatu waktu akan patah. Sebelum batuan patah ternyata disekitar fokus patahan sebelumnya mengalami perubahan stress dan strain. Demikian pula pada kejadian gempabumi, lokasi disekitar hiposenter juga akan terjadi perubahan tegangan dan regangan, hal ini disebabkan karena terjadinya penumpukan / akumulasi energi sebelum dilepaskan menjadi gelombang seismik.

Dari teori yang telah dibahas pada bab-bab terdahulu bahwa stress dan strain terkait dengan perbandingan perubahan kecepatan gelombang primer (Vp) dan kecepatan gelombang skunder (Vs) atau Vp/Vs. Dalam kejadian gempabumi perubahan Vp/ Vs dapat diamati dan secara empiris biasa dihitung dengan menggunakan diagram Wadati yang telah dibahas pada bab terdahulu.

Dengan keterbatasan peralatan pengamatan stress dan strain di lapangan, penelitian di Indonesia tentang prediksi gempa masih dapat dilakukan dengan mengamati parameter ini.

Untuk mengamati perubahan Vp/Vs parameter yang diperlukan adalah perbedaan waktu datang gelombang s dan p atau (s-p) dan waktu tiba gelombang p kedua parameter ini tidak sulit di lakukan di stasiun pengamat gempabumi. Penelitian ini pernah dilakukan dengan menghitung kembali perubahan Vp/Vs sebelum terjadi gempa Ambon pada akhir tahun 1996 dengan magnitude  sekitar 5,5 (Subardjo, 1998), ternyata mengalami perubahan Vp/Vs yang signifikan.

Penelitian yang sama telah dilakukan sebelumnya oleh Feng (1977), dia meneliti gempabumi Hsinfeng – Cina yang terjadi pada tanggal 19 Maret 1962 dengan magnitude 6,1 selama 11 bulan sebelumnya dan telah terjadi perubahan Vp/Vs sebesar – 11 %. Kemudian Sekiya (1977) juga melakukan hal yang sama pada gempa Kepulauan Izu – Jepang selama 11 tahun, sebelum terjadi gempa dengan magnitude 6,9 telah terjadi perubahan nilai Vp/Vs sebesar – 5%.

Perubahan Medan Magnet dan Resistivitas:

Medan magnet bumi menunjukkan perubahan sebelum dan sampai waktu terjadi gempabumi.  Sedangkan harga resistivitas listrik batuan umumnya menurun pada saat terjadi gempabumi dan kemudian kembali normal.

Air Tanah:

Beberapa pengamatan menunjukkan bahwa ketinggian dan temperatur air tanah naik sebelum terjadi gempabumi. Gordon mencatat kenaikan setinggi 2,9 cm pada sumur berjarak 110 km dari pusat gempabumi 1,5 jam sebelum gempabumi dengan magnitude 6,9 terjadi di Meckering tahun 1968.

Perubahan Radon:

Hasil pengamatan di beberapa tempat menunjukkan jumlah radio aktif radon bertambah dengan tajam sebelum terjadi gempa dan kemudian menurun secara cepat setelah gempabumi berakhir.

Gempa Mikro:

Gempa mikro yang banyak terdapat di daerah seismik aktif dapat dipakai sebagai indikasi akan terjadinya gempa utama. Pada umumnya aktivitas gempa mikro bertambah pada saat gempa utama akan terjadi.

Migrasi:

Pada tahun 1976 terjadi migrasi pusat gempa sepanjang jalur Mediteran berasal dari Itali dengan magnitude 6,9 merambat ke Ionian Yunani (6,7), Rusia (7,3), RRC (7,0), Mindoro (6,9), Sumatra (7,1), dan berakhir di Irian dengan magnitude 7,3.

Berikutnya deretan kejadian gempabumi terjadi tahun 1982 yang dimulai dari Atlantik Utara dengan kekuatan 6,0 bermigrasi ke Spanyol, Itali (6,1), Yunani (6,8), Iran (7,1), Todzhik (6,9), dan Burma dengan magnitude 6,4.

Injeksi Air:

Air yang dimasukkan kedalam tanah dapat mempengaruhi kegiatan gempa di daerah tersebut. Injeksi air sedalam 3800 meter di Colorado telah memicu terjadinya beberapa gempabumi. Hasil penelitian di daerah bendungan Saguling menunjukkan kenaikan aktivitas gempa mikro setelah pengisian air dibanding sebelumnya.

Ledakan Nuklir:

Ledakan nuklir yang diadakan di bawah permukaan bumi tercatat menimbulkan gempa-gempa susulan. Seismograf selain dapat menentukan lokasi dan kekuatan ledakan nuklir, juga pernah digunakan oleh Israel untuk mendeteksi mobilisasi tentara Arab dalam perang Arab-Israel tahun 1967.

3. Pengamatan Gempa Susulan

Gempa susulan (aftershock) merupakan proses stabilisasi medan stress ke keseimbangan yang baru setelah pelepasan energi atau stress drop yang besar pada gempa utama. Setiap gempa tektonik dangkal (kira-kira < 100km) selalu diikuti oleh dislokasi atau patahan. Dislokasi ini mengganggu keseimbangan medium sekelilingnya, sehingga dengan sendirinya muncul gempa lainnya yang merupakan proses keseimbangan baru. Proses ini bisa berlangsung beberapa jam sampai berminggu-minggu, tergantung pada besar gempa utama dan sifat batuan. Frekuensi dan magnitude gempa susulan ini umumnya menurun secara exponensial terhadap waktu (gambar 9.1).

Formula kurva penurunan frekuensi gempa susulan  terhadap waktu dapat didekati dengan persamaan berikut:

Nt = No exp.(-b.t)……………………………………..(9.3)

Dimana Nt adalah frekuensi gempa susulan pada waktu t,  No adalah frekuensi gempa susulan pada waktu awal dan b adalah konstanta attenuasi yang dapat ditentukan dengan regresi linier terhadap data yang ada. Waktu t yang dipakai bisa digunakan hari (24 jam), ½ hari (12 jam) selang 6 jam atau selang yang lebih kecil tergantung data yang ada. Prediksi berhentinya gempa susulan dapat ditentukan dari persamaan tersebut pada Nt = 0

Extrapolasi kurva frekuensi dan magnitude terhadap waktu bisa menjadi patokan perkiraan besarnya gempa susulan, sehingga bahaya dari gempa susulan ini menjadi sangat serius apabila gempa utama telah merusak struktur bangunan. Struktur bangunan yang sudah dirusak oleh gempa seperti susunan dinding, batu dan pilar yang tak mempunyai daya ikat lagi satu sama lain sehingga gempa susulan dengan MMI IV saja sudah cukup untuk merubuhkan bangunan.

Peranan peneliti gempa susulan baik dari BMG atau lainnya sangat diperlukan untuk melihat tingkat penurunan aktivitas gempa. Prediksi berhentinya aktivitas gempa susulan sangat diperlukan dalam pengambilan kebijakan pemerintah setempat untuk memulai kegiatan pembangunan dan rehabilitasi. Gempa susulan Bengkulu yang dilaporkan tim survei BMG menunjukkan penurunan aktivitas secara exponensial (gambar 9.1). Pada hari ke empat terdapat gempa susulan dengan skala Mw6.5 yang mengakibatkan kenaikan aktivitas kedua setelah gempa utama.

sumber: Pendahuluan Seismologi BMKG

Energi Gempabumi

Energi Gempabumi

Bentuk energi yang dilepaskan saat terjadinya gempabumi antara lain adalah energi deformasi gelombang. Energi deformasi dapat dilihat pada perubahan bentuk volume sesudah terjadinya gempa bumi, seperti misalnya tanah naik, tanah turun, pergeseran batuan, dan lain-lain. Sedangkan energi gelombang akan menggetarkan medium elastis disekitarnya dan akan menjalar ke segala arah.

Pemancaran energi gempa bumi dapat besar ataupun kecil, hal ini tergantung dari karakteristik batuan yang ada dan besarnya stress yang dikandung oleh suatu batuan pada suatu daerah. Pada suatu batuan yang rapuh ( batuan yang heterogen ), stress yang dikandung tidak besar karena langsung dilepaskan melalui terjadinya gempa gempa-gempa kecil yang banyak. Sedangkan untuk batuan yang lebih kuat ( batuan yang homogen ), gempa kecil tidak terjadi        ( jarang terjadi ) sehingga stress yang dikandung sangat besar dan pada suatu saat batuannya tidak mampu lagi menahan stress, maka akan terjadi gempa dengan magnitude yang besar.

Dengan kata lain untuk batuan yang lebih rapuh ( heterogen ), energi yang dikumpulkan tidak terlalu besar karena langsung dilepaskan dalam bentuk gelombang seismik, sedangkan untuk batuan yang lebih kuat, energinya akan dikumpulkan dalam waktu relatif lebih lama sehingga pada saat dilepaskan (karena batuan sudah tidak mampu lagi menahan stress), energinya sudah terkumpul banyak dan gempabumi yang terjadi akan lebih besar.

Energi gempa bumi dapat ditaksir dari pengamatan makroseismik, tetapi biasanya tidak diperoleh hasil yang memadai. Gelombang seismik merupakan bentuk energi yang paling mudah dideteksi yaitu dengan cara pencatatan pada alat. Dengan menggunakan data ini kita dapat menaksir energi gempabumi yang memadai. Ukuran besarnya energi gempabumi ditentukan dengan hasil catatan amplitudo gelombang seismik yang dinyatakan dengan istilah Magnitude gempabumi.

Penentuan magnitude baik menggunakan gelombang bodi ( mb ), maupun gelombang permukaan ( Ms ) tidak menunjukan skala yang sama. Secara historis ML, Ms, dan mb dimaksudkan untuk mendapatkan titik temu satu sama lain, akan tetapi pada kenyataannya penentuan secara terpisah menggambarkan ketidak setaraan terutama antara mb dan Ms.

Gutenberg dan Richter ( 1956 ) memperoleh hubungan antara Ms dan mb, sebagai mana terlihat pada persamaan (4.1-4). Kemudian Bath, pada tahun yang sama menyatakan bahwa:

mb = 0,61 Ms + 2,7..………………..(4.3-1)

Sedangkan Karnik, Venek, dan Zatopek pada tahun 1957 menyatakan bahwa hubungan antara kedua magnitude itu sama dengan yang dibuat oleh Bath.

Bertolak dari kenyataan diatas, maka  Gutenberg membuat penyeragaman dari nilai magnitude yang dikenal dengan  Unitied Magnitude sebagai rata-rata dari nilai mb dan Ms. Dengan nilai magnitude tersebut diperoleh hubungan antara energi terhadap magnitude sebagai berikut:

log E = 5,8 + 2,4 M

Dimana, E adalah  energi di pusat gempa, dalam satuan erg dan M adalah magnitude.

Sedangkan rumusan energi secara terpisah yang disepakati secara Internasional dipilih rumusan dari Bath, yang dinyatakan untuk mb dan Ms berturut-turut sebagi berikut:

log E = 5,78 + 2,48 mb

log E = 12,24 + 1,44 Ms

Perlu pula dijelaskan disini bahwa rumusan yang asli dari Gutenberg dan Richter ( 1942 ) adalah :

log E = 11,3 + 1,8 Ms

SKALA MODIFIED MERCALLI INTENSITY (MMI)

SKALA MODIFIED MERCALLI INTENSITY (MMI)

  1. Getaran tidak dirasakan kecuali dalam keadaan hening oleh beberapa orang.
  1. Getaran dirasakan oleh beberapa orang yang tinggal diam, lebih-lebih di rumah tingkat atas. Benda-benda ringan yang digantung bergoyang.
  1. Getaran dirasakan nyata dalam rumah tingkat atas. Terasa getaran seakan ada truk lewat, lamanya getaran dapat ditentukan.
  1. Pada siang hari dirasakan oleh orang banyak dalam rumah, di luar oleh beberapa orang. Pada malam hari orang terbangun, piring dan gelas dapat pecah, jendela dan pintu berbunyi, dinding berderik karena pecah-pecah. Kacau seakan-akan truk besar melanggar rumah, kendaraan yang sedang berhenti bergerak dengan jelas.
  1. Getaran dirasakan oleh hampir semua penduduk, orang banyak terbangun. Jendela kaca dan plester dinding pecah, barang-barang terpelanting, pohon-pohon tinggi dan barang-barang besar tampak bergoyang. Bandul lonceng dapat berhenti.
  1. Getaran dirasakan oleh semua penduduk, kebanyakan terkejut dan lari keluar, kadang-kadang meja kursi bergerak, plester dinding dan cerobong asap pabrik rusak. Kerusakan ringan.
  1. Semua orang keluar rumah, kerusakan ringan pada rumah-rumah dengan bangunan dan konstruksi yang baik. Cerobong asap pecah atau retak-retak. Goncangan terasa oleh orang yang naik kendaraan.
  1. Kerusakan ringan pada bangunan-bangunan dengan konstruksi yang kuat. Retak-retak pada bangunan yang kuat. Banyak kerusakan pada bangunan yang tidak kuat. Dinding dapat lepas dari kerangka rumah, cerobong asap pabrik-pabrik dan monumen-monumen roboh. Meja kursi terlempar, air menjadi keruh, orang naik sepeda motor terasa terganggu.
  1. Kerusakan pada bangunan yang kuat, rangka-rangka rumah menjadi tidak lurus, banyak lubang-lubang karena retak-retak pada bangunan yang kuat. Rumah tampak bergeser dari pondasinya, pipa-pipa dalam tanah putus.
  1. Bangunan dari kayu yang kuat rusak, rangka-rangka rumah lepas dari pondasinya, tanah terbelah, rel  melengkung. Tanah longsor di sekitar sungai dan tempat-tempat yang curam serta terjadi  air bah.
  1. Bangunan-bangunan kayu sedikit yang tetap berdiri, jembatan rusak, terjadi lembah. Pipa dalam tanah tidak dapat dipakai sama sekali, tanah terbelah, rel melengkung sekali.
  1. Hancur sama sekali. Gelombang tampak pada permukaan tanah, pemandangan menjadi gelap, benda-benda terlempar ke udara.

PERBANDINGAN BEBERAPA SKALA INTENSITAS

M S K Skala Jepang Skala Rossi Forrel
Th. 1964 Th. 1950 Th. 1874
I 0 I
II 1 II
III 2 III
IV 2 / 3 IV
V 3 V – VI
VI 4 VII
VII 4 / 5 VIII
VIII 5 IX
IX 6 X
X 6 X
XI 7 X
XII 7 X

Penentuan Epicenter Gempa Bumi Secara Manual

supriyadi

13.06.1607

Untuk menentukan lokasi sumber gempabumi diperlukan data waktu tiba gelombang seismik dengan sekurang – kurangnya 4 data waktu tiba gelombang P. Sedangkan penentuan magnitude gempa memerlukan pengukuran amplitude, dan periode atau lamanya gelombang tersebut tercatat di suatu stasiun . Selain itu juga diperlukan data posisi stasiun yang digunakan dan model kecepatan gelombang seismik. Episenter gempa dapat ditentukan secara manual. Metode-metode tersebut dijabarkan sebagai berikut :

1. Metoda Lingkaran Dengan Tiga Stasiun.

Dianggap ada tiga stasiun pencatat , masing–masing S, S2, dan S3. Dengan  menggunakan dua data stasiun pencatat , S2 dan S3 sebagai pusatnya, dibuat lingkaran-lingkaran dengan jari-jari :

r2 =  v ( t2 – t1 )

r3 =  v ( t3 – t1 )

dengan :

r = jari-jari lingkaran.

v = kecepatan gelombang

t = waktu tiba gelombang

Episenter yang dicari adalah pusat sebuah lingkaran yang melalui S dan menyinggung kedua lingkaran yang berpusat di S2 dan S3   tersebut.

Pada penggunaan praktis, metode ini dilakukan dengan cara berulang-ulang mencoba membuat lingkaran ketiga sehingga didapatkan titik E yang terbaik. Dengan demikian metode ini kurang dapat diandalkan, karena kualitas penentuannya tergantung pada ketelitian penggambaran ketiga lingkaran tersebut.

Gambar5.1. Penentuan episenter dengan metode lingkaran tiga stasiun


2. Metode Hiperbola

Bila dianggap kecepatan gelombang seismik v konstan dengan tiga stasiun S1, S2 dan S3 diukur waktu tiba gelombang seismik pada ketiga stasiun itu adalah jam t1, t2, dan t3 dimana t3 > t2 > t1, maka dengan menggunakan pasangan stasiun S1 dan S2, episenternya harus terletak pada sebuah kurva dengan harga t2 – t1 konstan. Kurva semacam ini berupa hiperbola dengan S1 dan S2 sebagai titik fokusnya. Karena telah diketahui t2 > t1 maka kurva hiperbolanya cekung kearah titik titik S1. Dengan cara yang sama dilakukan lagi untuk pasangan stasiun S2, S3 dan S3, S1. Ketiga hiperbola ini berpotongan pada suatu titik dan titik potong ini adalah episenternya.

3. Metode Titik Berat

Dalam metode ini selain didapat koordinat episenter, kedalaman fokusnya juga dapat ditentukan. Dengan menggunakan tiga stasiun pencatat S1, S2, dan S3  dapat dibuat masing-masing lingkaran dengan pusat stasiun dan jari jari r1, r2 dan r3. Jari-jari lingkaran adalah jarak hiposenter d = (s-p) k,  dimana k adalah konstanta Omori yang besarnya tergantung pada kondisi geologi setempat dan besarnya sekitar 7,8.

Sedangkan (s-p) adalah beda waktu tiba gelombang S dan P. Koordinat episenter E merupakan perpotongan garis berat ketiga lingkaran tersebut. Garis berat lingkaran 1 dan 2 adalah garis yang menghubungkan perpotongan lingkaran 1 dan lingkaran 2 (garis AB). Garis berat lingkaran 1 dan 3 adalah garis yang menghubungkan perpotongan lingkaran 1 dan lingkaran 3 (garis CD). Sedang Garis berat lingkaran 2 dan 3 adalah garis yang menghubungkan perpotongan lingkaran 2 dan lingkaran 3 (garis EF).

Gambar 5.3. Penentuan episenter metode titik berat

Kedalaman hiposenter (h) dapat diperoleh dengan rumus Pythagoras,

h1 = (r12 –(S1 Ep)2)1/2

h2 = (r22 –(S2 Ep)2)1/2 , dan  h3 = (r32 –(S3 Ep)2)1/2   dimana h merupakan rata-rata dari  h1, h2 , dan h3 .

Dengan metode ini dapat pula ditentukan waktu kejadian gempa (origin time). Untuk menentukan origin time dengan pendekatan (s-p) digunakan grafik Wadati seperti terlihat pada gambar berikut.

Gambar 5.4 Grafik Wadati tp adalah waktu tiba gelombang P dan to adalah origin time dan besarnya gradien mendekati angka 1,73.


4. Metode Gerak Partikel

Metode Gerak Partikel (particle motion) dipakai untuk menentukan hiposenter (episenter dan kedalamannya) dengan menggunakan satu stasiun yang memiliki 3 komponen. Dalam penentuan ini arah awal impuls ketiga komponen (kompresi atau dilatasi) harus jelas. Variabel yang dipakai adalah setengah amplitude awal impuls gelombang P ketiga komponen dan beda waktu gelombang S dan P atau (s-p). Prosedur penentuannya adalah sebagai berikut:

Tentukan dahulu arah impuls awal ketiga komponen (kompresi atau dilatasi).

Perhatikan rekaman komponen vertikal: jika komponen vertikal kompresi, maka pada komponen horizontalnya tandanya harus dibalik (C = minus, D = plus), sebaliknya jika komponen vertikal dilatasi maka komponen horizontalnya tandanya tetap ( C = plus, D = negatif).

Dari bacaan ½ amplitude komponen horizontal dibuat vektor resultannya, misalnya AH.

Dari bacaan ½ amplitude komponen vertikal (AV) dan AH dibuat vektor resultannya, misalnya AR.

Bulan, Anggota Tata Surya yang Unik

supriyadi

13.06.1607

Usia bulan:

Usia bulan lebih tua dari yang diperkirakan, bahkan diperkirakan lebih tua daripada bulan dan matahari itu sendiri! Umur bumi paling tua yang bisa diperkirakan adalah 4.6 milyar tahun. Sementara itu batuan bulan malah sudah berumur 5.3 milyar tahun. bulan lebih tua 1 milyar tahun ketimbang bumi!

Lebih keras diatas:

Normalnya sebuah planet akan keras di dalam dan makin lama makin lembut diatas, seperti bumi kita. Tidak demikian hal nya dengan bulan. Bagian dalam bulan seperti berongga, sementara bagian atasnya keras sekeras titanium. Hal ini lah yang menyebabkan bahwa bulan bagaimanapun juga sangat kuat dan tahan serangan. Kawah terbesar di bulan berdiameter 300km, dengan kedalaman hanya 6.4km. Sementara itu, menurut hitungan ilmuwan, jika batuan yang menubruk bulan tadi, menubruk bumi, maka akan terbentuk lubang paling tidak sedalam 1.200km! Bulan yang berongga juga dibuktikan saat kru apollo yang meninggalkan bulan, membuang kembali sisa pesawat yang tidak digunakan kembali ke bulan . Hasilnya, sebuah gempa dan gema pada permukaan bulan terjadi selama 15 menit. Penemuan ini diulang kembali oleh kru apollo 13, yang kali ini jatuh lebih keras, menimbulkan gema selama 3 jam 20 menit. Ibaratnya seperti sedang membunyikan lonceng yang kemudian berdentang, hanya saja karena tidak ada udara, maka suara dentang lonceng yang dihasilkan tidak bisa didengar oleh manusia. Sementara itu, penemuan ini dipertanyakan oleh Carl sagan, bahwa satelit alamiah nggak mungkin kopong dalam nya.

Bebatuan bulan:

Asal usul batuan dan debu bulan sendiri tidak jelas, karena perbedaan komposisi pembentuk bulan yang berbeda sekali dengan komposisi batuannya. Batu yang pernah diambil team apollo sebesar 380kg lebih, menunjukkan ada nya bahan unik dan langka seperti titanium murni, kromium, itrium, dan lain lain. Logam ini sangat keras, tahan panas, anti oksidasi. Jenis logam ini tidak terdapat secara alamiah di alam, dan jelas tidak mungkin terbentuk secara alamiah. Para ilmuwan juga mengalami kesulitan menembus sisi luar bulan sewaktu mereka mengebor bagian terluar bulan. Setelah di teliti, bagian yang di bor tadi adalah sebuah mineral dengan kandungan titanium, uranium 236 dan neptunium 237. Bahan bahan super keras anti karat, yang juga tidak mungkin terbentuk secara alamiah, karena digunakan di bumi untuk membuat pesawat stealth. Kemungkinan besar, ini logam hasil sepuhan manusia! Batuan bulan juga entah bagaimana sangat magnetik. Padahal tidak ada medan magnet di bulan itu sendiri. Berbeda dengan bumi yang banyak sekali mengandung medan magnet.

Air menguap:

Pada 7 maret 1971, instrumen bulan yang dipasang oleh astronot merekam adanya air melewati permukaan bulan. Uap air tadi bertahan hingga 14 jam dan menutupi permukaan seluas 100 mil persegi. Ukuran bulan = matahari? Bulan bisa menutupi matahari dalam gerhana bulan total, tapi ukurannya tidak sama. Yang menarik, jarak matahari ke bumi persis 395 kali lipat jarak bulan ke bumi, sedangkan diameter matahari persis 395 kali diameter bulan. Pada saat gerhana matahari total, ukuran bumi dan bulan persis sama, sehingga matahari bisa tertutup bulan secara sempurna. Hitungan ini terlalu cermat dan akurat jika hanya merupakan kebetulan astronomi semata.

Orbit yang aneh:

Orbit bulan merupakan satu satunya yang benar benar hampir bulat “sempurna” dari semua sistem tata surya kita. berat utama bulan terletak lebih dekat 6000 kaki ketimbang pusat geometris nya, yang harusnya justru mengakibatkan orbit lengkung. Sesuatu yang tidak diketahui telah membuat bulan stabil pada poros nya. Suatu teori yang belum di yakini benar adanya juga mengatakan bahwa wajah bulan yang selalu sama di setiap hari nya karena adanya suatu hal yang menyebabkan itu. Yang pada intinya, tetap suatu kebetulan astronomi.

Asal usul bulan:

Teori bahwa bulan tadinya adalah sebagian dari bumi yang mental keluar bumi karena tumbukan hebat di masa lalu hampir saja di setujui oleh semua orang, setelah sebelumnya mereka mengira bahwa bulan terbentuk dari debu debu angkasa yang mampat menjadi satelit bumi. Belakangan ini teori menyebutkan bahwa jika bagian sebesar bulan terambil dari bumi, maka bumi tidak akan bisa bulat seperti sekarang. Dan jika bulan tidak berongga, maka tidak mungkin bulan bisa berada menjadi satelit bumi. Terlalu berat dan bulan akan menghantam bumi. Teori teori asal usul bulan kembali dipertanyakan, dan teori paling “gila” sepanjang sejarah mulai muncul, bahwa bulan diciptakan dengan sengaja oleh manusia terdahulu sebagai alat bantu dalam navigasi dan juga astronomi!

Gempa Matahari

supriyadi

13.06.1607

Gempa yang disebabkan oleh flare, seharusnya terlihat di bintang lain

Seismologi Matahari
Pengawasan berkelanjutan terhadap osilasi Matahari atau yang juga dikenal sebagai helioseismologi saat ini menjadi teknik yang digunakan untuk mempelajari struktur fisik Matahari. Salah satunya adalah mengawasi bagian lapisan-lapisan yang berbeda dari gas panas dan plasma. Secara umum, osilasi ini didahului oleh pergolakan konveksi yang terjadi di dekat permukaan Matahari saat materi panas muncul dari kedalaman Matahari, dan kembali tenggelam saat menjadi dingin. Gerakan ini menyebabkan terjadinya derau latar belakang yang mengguncang Matahari dengan frekuensi yang cukup luas.

Kejadian tersebut cenderung menyembunyikan osilasi yang terjadi oleh kondisi lokal seperti flare Matahari, letusan plasma panas yang besar yang terjadi akibat perubahan mendadak di medan magnet Matahari. Akibatnya, terjadi pelepasan energi dalam jumlah besar, dan dikenal dapat menyebabkan terjadinya riak pada permukaan sebuah kolam saat ada kerikil jatuh di dalamnya.

Flare Matahari umumnya terjadi di sekitar bintik Matahari, dan ini menunjukan siklus aktivitas yang mencerminkan siklus bintik Matahari yang terjadi dan mencapai puncaknya tiap 11 tahun.

Saat Karoff dan Kjeldsen mempelajari data dari dua satelit yang mengawasi Matahari (the Solar and Heliospheric Observatory and the Geostationary Operational Environmental Satellite), mereka menemukan jika osilasi frekuensi tinggi di seluruh bintang lebih terlihat saat flare Matahari lebih aktif, dan memperlihatkan secara tidak langsung hubungan di antara keduanya.

Osilasi tersebut secara tidak langsung dapat diamati. Kedua satelit melihat adanya pergeseran pada frekuensi cahaya yang dipancarkan Matahari, akibat gerak permukaan Matahari. Data inilah yang diambil dan diinterpretasikan, bahwa pergeseran itu terjadi akibat goncangan. Pengamatan ini baru yang pertama. Pekerjaan baru dimulai dan yang harus dilakukan adalah mengungkapkan bagaimana energi dari flare dihantarkan ke dalam osilasi tersebut.

Lemparkan Cahaya Ke Matahari
Untuk mempelajari lebih lanjut diperlukan perencanaan dengan model struktur Matahari untuk area tempat flare dan bintik Matahari terbentuk. Menurut Houdek, pekerjaan lanjutan ini akan memberi secercah cahaya untuk memahami siklus Matahari yang sampai saat ini belum dipahami secara keseluruhan. Bisa jadi, dengan studi lanjutan, simpul pengembalian antara gempa Matahari dan flare dapat diketahui. Sementara, untuk osilasinya, tim peneliti memperkirakan hal tersebut terjadi sebagai respons balik dari aktivitas flare. Houdek juga memperkirakan jika getaran yang terjadi itu bisa jadi mengubah struktur matahari dan memengaruhi proses terbentuknya flare.

Bagi Karoff yang juga meneliti bersama Houdek, penemuan ini mungkin bisa juga terjadi pada bintang lain. Dengan mempelajari Matahari, diharapkan kondisi di bintang lainnya bisa dipahami. Namun, hingga saat ini masih sangat sulit untuk mengetahui, apakah bintang lain juga memiliki siklus flare dan bintik yang bisa dibandingkan dengan Matahari. Mengapa susah? Dengan penjelasan secara sederhana, bintang lain memang berada terlalu jauh untuk diamati. Tapi sekarang, dengan mengambil sinyal osilasi dari berkas cahaya Matahari, kita bisa mencoba untuk menarik kesimpulan mengenai siklus aktivitas flare pada bintang jauh.

Jika sinyal yang sama bisa dilihat pada bintang jauh, maka bisa disimpulkan kalau bintang tersebut juga memiliki flare. Data seperti itu akan bisa didapat dari satelit astronomi seperti Teleskop Kepler milik NASA yang akan diluncurkan tahun depan.